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Exper imenta l  and theore t ica l  Invest igat ions show that  the p r e sence  of gas  or  liquid in rocks  has a s ig -  
nificant effect  on the dynamics  of phenomena accompanying fa i lure  of a camouflet  cavi ty  fo rmed  by an under -  
ground explosion.  In the p resen t  work ,  based  on numer i ca l  and approx imate  analyt ical  solut ions of the p rob lem,  
quanti tat ive c h a r a c t e r i s t i c s  of this effect  a r e  p resen ted .  

1 .  Fai lure  o f a G a s  Cavi ty  in a Saturated Porous  Medium with I r r e v e r s i b l e  Volume Deformat ion .  In [1], 
the influence of wa t e r  on the mechan ica l  effect  of underground explosions is Invest igated with the help of the 
wa t e r -head  model .  It is es tab l i shed  that an inc rease  in the quantity of wa t e r  In r o c k s  leads  to a not iceable In-  
c r ea se  in peak  p r e s s u r e s  a t  the f ront  of the c o m p r e s s i o n  wave.  In [2], fa i lure  of a cavity in a g a s -  and w a t e r -  
sa tu ra ted  e las top las t i c  med ium was invest igated a s suming  equal p r e s s u r e s  in all  components .  At the s ame  
t ime,  exper imenta l  and theore t ica l  invest igat ions [3-6] indicate that such an assumpt ion  ls  well just if ied at 
p r e s s u r e s  exceeding s eve ra l  kUobars .  Start ing with the sma l l e s t  s t r e s s e s ,  the p ic ture  of volume d e f o r m a -  
tion of the med iu m ,  apparen t ly ,  is as  fol lows.  At f i r s t ,  as  the s t r e s s e s  applied to the porous  med ium inc rease ,  
the solid f r a m e w o r k  a s s u m e s  the ma in  load.  At this s tage,  the p r e s s u r e  In it ls s ignificantly h igher  than In 
the substance  sa tura t ing  the po res ,  and the bulk c o m p r e s s i o n  modulus of the med ium as  a whole Is near ly  equal 
to the bulk c o m p r e s s i o n  modulus of the solid component .  With a fu r the r  i nc rea se  in s t r e s s ,  the solid f r a m e -  
work  begins to  fail  and the po res  begin to fill up. At the same  t ime,  the compres s ib i l i t y  of the porous  med ium 
can i nc rea se  sharp ly  (by an o rde r  of magnitude}. Models of rocks  that a r e  based  on the assumpt ion  of p las t ic  
filling of po re s  [4-6] ag ree  sa t i s fac to r i ly  with the exper imen ta l  data on hydros ta t i c  c o m p r e s s i o n  of porous  
rock  [4, 5]. The po re s  continue to fill up until the increas ing  p r e s s u r e  inside the po res  and the p r e s s u r e  in 
the m a t r i x  a r e  approx ima te ly  unequal g iven the applied load.  (The p r e s s u r e  cannot equalize comple te ly  due 
to the s t rength  p r o p e r t i e s  of the m a t r i x  [4-6]; however ,  Ap/p  << 1, where  Ap Is the di f ference in the p r e s s u r e s  
in the m a t r i x  and pore ,  p Is the external  p r e s s u r e  applied to the medium.)  Fur the r  Inc rease  in s t r e s s  ts equally 
absorbed  by the In te rs t i t i a l  substance  and the m a t r i x .  This  leads  to an inc rease  in the bulk c o m p r e s s i o n  modu-  
lus of the med ium.  According to  [4-6], taking Into account the different  p r e s s u r e s  In the pore  and ma t r i x  at  
all  s tages  of loading and unloading leads  to i r r e v e r s i b l e  compact ion of the medium,  observed  exper imenta l ly  
[3~ 4]. In this case ,  at  the unloading stager the In ters t i t ia l  m a t t e r  due to the s t rength  p r o p e r t i e s  of the m a t r i x  
turns  out to be o v e r c o m p r e s s e d  compared  to the m a t r i x  i tself .  We note that  the model  of the med ium with 
equal p r e s s u r e s  In all  components ,  used In [1, 2], does not desc r ibe  the I r r e v e r s i b l e  nature  of the bulk de fo r -  
mat ion  of porous  med ia .  

In this pape r ,  the p rob lem of the expansion of a cavi ty  produced by a camoufle t  explosion In a g a s -  and 
w a t e r - s a t u r a t e d  e l a s top las t t c  med ium having the p rope r ty  of I r r e v e r s i b l e  volume c o m p r e s s i o n  descr ibed  above 
is solved numer i ca l ly .  The [ r r e v e r s i b i l i t y  of the c o m p r e s s i o n  is  desc r ibed  by taking into account  the different  
p r e s s u r e s  In a pore  and in the solid m a t r i x  both with loading as  well as with unloading of the med ium.  It should 
be noted that  the exis t ing i r r e v e r s i b U i t y  of volume deformat ion  is re la ted  to the p r o c e s s  of hydros ta t i c  com-  
p r e s s i o n  of the porous  med ium.  Taking into account  the poss ib le  volume s t r e s s e s  s t emming  f r o m  the p las t ic  
shea r  of the med ium (dilatancy effect) is  an Independent p rob l em and is  not invest igated In the p resen t  work .  

The peak p r e s s u r e s  as  a function of dis tance f rom the cen te r  of the explosion,  the dependence of the m a x -  
imum radius  of the cavi ty ,  the p las t ic i ty  radius  as a function of poros i ty ,  and the prof i les  of the shock waves  
a r e  obtained. It Is shown that  in a porous  med ium the shock wave is t r a n s f o r m e d  Into a continuous c o m p r e s -  
sion wave.  The dis t r ibut ion of the res idua l  threshold  p r e s s u r e  Is obtained for  a w a t e r - s a t u r a t e d  med ium.  

Assume  that  Init ial ly the re  ls a spher ica l  cavi ty  with radius  a0, in which the ene rgy  W of an explosion Is 
l ibe ra ted  suddenly in a space  occupied by a sa tu ra ted  porous  med ium.  We will a s s u m e  that  the Initial p r e s s u r e  
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in the cavi ty  equals 700 kbar .  We will a s s u m e  that the substance  in the cavity is an ideal gas  with an adiabat ic  
index T = 1.4. Genera l ly  speaking,  the adiabat ic  index changes as  the cavity expands.  However ,  we will neglect  
the  change in the quantity T,  turning our  at tent ion f i r s t  to the quali tat ive aspec t s  of the behav ior  of a sa tura ted  
porous med ium with an explosion and to the dynamics  of its development .  In o rder  to desc r ibe  a spher ica l ly  
s y m m e t r i c a l  mot ion of the med ium,  we will use  the hydrodynamic  equations that take into account  the s t rength 
ef fec ts .  The s ta r t ing  equations in Euler  va r i ab l e s  have the fo rm 

av ~v (an u ] 0u 0u (~9% 1 v r + , ~ = , [ ~ + 2 - - ; -  2 7 + u ~ = v ~  r +2~,. (1.1) 

i~-Y + u-gTr "t- P-g ' i ' - f  PU"gT, = ' ~ " ~ V ~ T r  - _" 

The f i r s t  equation tn the s y s t e m  (1.1) is the equation of continuity, the second and third equations a r e  the equa-  
tions of mot ion and energy ,  r e spec t ive ly .  Here ,  v and e a r e  the speci f ic  volume and specif ic  ene rgy  of the 
mul t ieompoueut  medium;  u is the velocity;  ~r  and ere a r e  the radia l  and angular  components  of the s t r e s s  
t enso r ;  r =a  r - a q  is the shea r  s t r e s s ;  p = - (z r +2 %0)/3 is the p r e s s u r e ;  t is the t ime;  r ls the Euler  coordinate .  

The s y s t e m s  of equations (1.1) is c losed by the e las top las t l c  re la t ions  and the equation of s tate  of the 
porous  med ium.  We will desc r ibe  the mechan ica l  p r o p e r t i e s  of the med ium in the e las t ic  region by Hooke ' s  
law 

or o.~ {on u} (1.2) 
-g't- A- u -gTr = 2G -g7 - -  7 ' 

where  G is the shea r  modulus of the porous  med ium.  In the p las t ic  zone, we will use T r e s e a ' s  yield c r i te r ion ,  
where  

t~[ = ~* ---- const, (1.3) 

* is the yield s t r e s s .  Descr ib ing  the p las t ic  p r o p e r t i e s  of the med ium within the f r a m e w o r k  of the model  of 
ideal p las t ic i ty  (1.3), we the reby  neglect  the dry  f r ic t ion inherent  to soil .  However ,  taking Into account the 
p las t ic  p r o p e r t i e s  of the m a t e r i a l  in the f o r m  (1.3) is  the s imp le s t  p rocedure  and p e r m i t s  descr ib ing  the bas ic  
quali tat ive laws governing the dynamics  of the development  of the explosion i n a  g a s - w a t e r - s a t u r a t e d  med ium.  
Let us make  the following comment s  concerning the s t r e s s  t ensor  aij ,  used in (1.1)-(1.3). The quantity alj is 
a complete~.stress t enso r  acting on the e lement  of the porous  med ium.  In its turn,  crlj can be re la ted  to the 

.ai]) act ing on the solid component  and p r e s s u r e  of the gas  or  fluid q filling the po res  [7]: s t r e s s e s  

aij = (t - -  m)  a ~  ) - -  mqS i j ,  (1.4) 

where  m is the poros i ty ;  5tj is K r o n e c k e r ' s  symbol .  P e r f o r m i n g  a convolution of the t enso r  re la t ion  (1.4), we 
obtain that the total  p r e s s u r e  in the med ium p is re la ted  to the p r e s s u r e  in the m a t r i x  p(1) and in the pore  q by 
the re la t ion  

p = (1 - -  re)pC1) "4- mq.  (1.5) 

The expansion of the gas  cavi ty  with a camouf le t  explosion assuming  that  p(1) =q =p was Invest igated in [2]. 
However ,  as  shown above,  for  low p r e s s u r e s  the d i f ference  between p(i) and q, which leads  to l r r e v e r s t b t l l t y  
of the deformat ion  of volume compres s ion ,  mus t  be taken into account  in o r d e r  to desc r ibe  c o r r e c t l y  the de-  
fo rmat ion  of the med ium.  In the p re sen t  work,  in o rde r  to desc r ibe  the i r r e v e r s i b l e  nature  of the volume de-  
fo rmat ions  of the med ium taking into account  Eq. (1.5) we used the model  of a mul t icomponent  medium p r o -  
posed in [6], wlSlch is a genera l iza t ion  of [4, 5] to the case  of c o m p r e s s e d  m a t r i c e s  and subs tances  filling a 
porous  space .  According to [6], this model  of the med ium desc r ibe s  sa t i s fac to r i ly  the behavior  of porous  g a s -  
w a t e r - s a t u r a t e d  rocks  with loading and unloading. For  an equation of s ta te  of a porous  medium [6], it is n e c e s -  
s a r y  to give a nu m ber  of p a r a m e t e r s  cha rac te r i z ing  the m a t e r i a l  of the ma t r i x  and the liquid or  gas  that s a tu -  
r a t e s  the p o r e s .  We choose the following m i c r o s c o p i c  p a r a m e t e r s  of the ma t r ix :  densi ty  2.65 g/cma;  p las t lc  
velocity of sound c0 = 4500 m/sec ;  shea r  modulus  Gm = 100 kbar ,  shear  s t rength  Y = 1 kbar .  As the in te rs t i t ia l  
liquid, we chose wa te r  with the p a r a m e t e r s  for  the equation of s tate  taken f rom [8]. According to [4-6], the 
p a r a m e t e r s  Gm and Y desc r ibe  the deformat ion  of a med ium in the vicinity of a pore ,  whose dimensions  we 
will a s s u m e  a r e  much l e s s  than the ave rage  s ize  of the p ieces  Into which the med ium is f r ac tu red  with m a c r o -  
scopic  p las t ic  shea r  and a r e  the c h a r a c t e r i s t i c  m t c r o p a r f l c l e s  or  g ra ins  of which the med ium cons is t s .  A c -  
cording to  [9], for  m o s t  poss ib le  sca les  of explosions this e s t ima te  is  just if ied.  The shea r  deformat ion  of the 
med ium in the immedia te  vicini ty of a pore  in the genera l  case  m a y  not be re la ted  to the shear ing d e f o r m a -  
tion of the med ium as a whole (e.g., with hydros ta t i c  p r e s s u r e ) ,  so that  the m i c r o s c o p i c  p las t ic  flow should 
be desc r ibed  by constants  that  d i f fe r  f r o m  G m and Y. According to the work  descr ibed  in [10], where in  an 
expe r imen ta l  study was conducted of the dependence of the p a r a m e t e r s  of dynamic  c o m p r e s s i o n  of NaC1 as 
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a function of poros i ty ,  the m a c r o s c o p i c  s t rength  of the med ium d e c r e a s e s  with an i nc r ea se  in poros i ty .  Fo r  
this r eason ,  the quantity a *, enter ing into (1.3), was  chosen in the calculat ions to be l e s s  than Y. We note that  
with the a s sumpt ions  made  concerning the s i zes  of the p i e c e s  of f r ac tu red  rock,  the e l a s top las t i c  behav ior  of 
the med ium as a whole will not have a s ignif icant  ef fec t  on the change in po ros i ty  (the pore  sample  with m a c r o -  
scopic  shea r  will be taken along the boundar ies  of the f r ac tu red  p ieces ,  whose d imens ions  a r e  taken as  s ig -  
nlficantly g r e a t e r  than the ave r age  pore  s izes ) .  Fo r  this r eason ,  it m a y  be a s sumed  that  the equat ion of s ta te  
of the m e d i u m  does not depend on the shear ing  deformat ions  of the med ium as a whole.  

For  a numer i ca l  calculat ion,  the s y s t e m  of equations (1.1)-(1.3), r ewr i t t en  in Lagrangtan  coordina tes ,  
was  rep laced  by a s y s t e m  of finite d i f ference  equat ions.  The d i f ference  scheme ,  s i m i l a r  to the scheme  in [11], 
had s e c o n d - o r d e r  a c c u r a c y  with a un i form Lagrangtan  gr id .  In o r d e r  to smooth the hydrodynamic  d iscon-  
t inui t ies ,  a l inea r ly  quadra t ic  a r t i f ic ia l  v i scos i ty  was  introduced into the d i f ference  equationst  which pe rmi t t ed  
d i rec t  computat ion.  The s tabi l i ty  o f  the calculat ion was ensured  by an appropr i a t e  choice  of the t ime  step 
chosen.  The init ial  conditions were  given as the p r e s s u r e  in the initial  cavity and the values  of v, p, and e in 
the surrounding soil .  The veloci ty  u at  t = 0 was eve rywhere  a s sumed  to equal ze ro .  The boundary conditions 
were  given at  the cen te r  (for [ =0) and in f ront  of the shock-wave  f ront .  Pa r t  of the spat ia l  gr id  was located in 
the gas  cavi ty ,  which pe rmi t t ed  taking into account  the complex gasdynamic  p ic ture  of the mot ion of the gas  in 
the cavi ty .  

Numer ica l  ca lcula t ions  were  c a r r i e d  out for  G =100 kbar9 o*=150 ba r ,  and P~o =200 ba r  (p~ is the back-  
ground p r e s s u r e  in the medium).  Figure  1 shows the m a x i m u m  radia l  s t r e s s  larl on the shock-wave  front  as 
a function of d is tance  to the gas  cavi ty  fo r  med ia  with different  poros i ty  and dif ferent  subs tances  sa tura t ing 
the po re s  (gas or  wate r ) .  Curve  1 co r r e sponds  to the case  of a nonporous medium,  2 and 3 co r respond  to the 
case  of a porous  w a t e r - s a t u r a t e d  med ium with a poros i ty  m equal to 7 and 23%, r e spec t ive ly .  Curves  6 and 7 
a r e  taken f r o m  [2] and p re sen ted  he re  for  compar i son  with the r e su l t s  of the p r e sen t  work .  Curve 6 c o r r e -  
sponds to a w a t e r - s a t u r a t e d  med ium with m = 23% and curve  7 co r r e sponds  to a g a s - s a t u r a t e d  meditun with 
m = 7%. Both cu rves  were  obtained f r o m  numer i ca l  calculat ions a s suming  equal p r e s s u r e s  in all  components  
of the med ium.  F r o m  an ana lys i s  of cu rves  1-5, i t  is evident that  as  the po ros i ty  i n c r e a s e s ,  the ampli tude of 
the shock wave d e c r e a s e s  s ignlf icant ly .  Th is  ls e spec ia l ly  not iceable in a g a s - s a t u r a t e d  med ium.  The curves  
cor responding  to a med ium with gas  have a c h a r a c t e r i s t i c  deviat ion that  leads  to l e s s  damping of the wave at 
smal l  ampl i tudes .  This  deviat ion is r e la ted  to the change in the propagat ion  r e g i m e  of the wave .  The region 
of the cu rves  above the deviat ion co r r e sponds  to the case  when the po res  a re  filled up along the shock-wave 
f ront .  This  r eg ime ,  accord ing  to [8], is cha r ac t e r i z ed  by significant  d iss ipa t ive  p r o c e s s e s  and, in pa r t i cu la r ,  
by high shock- induced heat ing of the m ed i um.  At lower  p r e s s u r e s ,  accord ing  to  the model  chosen for  the m e -  
dium [4-6], the m a i n  load is  absorbed  by the solid f r a m e w o r k  and the po res  a r e  not filled up. In this case ,  
ene rgy  d iss ipa t ion  d e c r e a s e s  sharply,  which leads  to l e s s  damping of the wave i tse l f .  The curves  for  the w a t e r -  
sa tu ra ted  med ium  behave s imi l a r ly ;  however ,  due to the fact  that  there  is r e la t ive ly  l i t t le  flow into pores  fiUed 
with wa te r ,  no sharp  deviat ion is obse rved .  If the r e su l t s  of this work  a re  compared  with curves  6 and 7, then 
one can see  that  fo r  the w a t e r - s a t u r a t e d  med ium there  ls good a g r e e m e n t  between the calculat ions (curves 3 
and 6) in the s t r e s s  range  l~ r l  > 1 kbar .  For  the g a s - s a t u r a t e d  med ium with l a r l  > 1.5 kbar ,  the re  is a l so  
good a g r e e m e n t  with calculat ions accord ing  to both mode l s .  With lower  s t r e s s e s ,  curve  7 d e c r e a s e s  with the 
s a m e  slope,  s ince according  to the e q u a l - p r e s s u r e  model  the r eg ime  in which the po res  col lapse  will occur  
at  p rac t i ca l ly  all  s t r e s s e s  due to the sma l l  bulk c o m p r e s s i o n  modulus of the gas  in the p o r e s .  Curve 5 at 
smal l  s t r e s s e s  is s ignif icant ly  higher  than curve  7. The ampli tude of the e las t ic  wave in this  case  is 5-10 
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t imes g r ea t e r  than the amplitude calculated according to the equa l -p ressure  model.  This indicates that for  a 
gas - sa tu ra t ed  medium with mic ropa r t i c l e s  and grains  having a high strength,  the equa l -p res su re  model can-  
not be used for descr ibing the damping of a smal l -ampli tude wave. 

It should be noted that on curves  4 and 5 in Fig. 1, immediately af ter  the deviation there ls a region in 
which the damping of the wave is weaker  than even the damping in the e las t ic  zone for  lower s t r e s se s .  This 
effect is related to the res t ruc tu r ing  of the wave profile as it passes  f rom the medium with high compress ibi l i ty  
into the low-compress tbUi ty  medium. The physics of this p rocess  is s imi la r  to that descr ibed In detail in [12]o 
(In the present  work, we consider  rocks that have low compress ib i l i ty  for  low s t r e s s e s  and for  high s t r e s ses  
their  compress ib i l i ty  can increase  considerably due to pore filling, which is what leads to the p re s su re  depen- 
dence of the physical  boundary in the behavior  of the substance and the proper t ies  of the wave in proport ion to 
the damping of the wave amplitude.) 

Taking into account different p r e s su re s  in the mat r ix  pores leads to a degenerat ion of the shock wave 
into a continuous compress ion  wave. This is clearlY seen in Fig. 2a, b, where the profi les  of the s t r e s s  waves 
are  shown for  the wa te r - sa tu ra ted  and gas - sa tu ra t ed  media,  respect ively .  Fig. 2a, curve 1 cor responds  to a 
nonporous medium and to the t ime ~, =t/ t  o =3 (t o =a0/c 0, c o is the plast ic  velocity of sound in the solid f r a m e -  
work). Curves 2 and 3 correspond to the wa te r - sa tu ra ted  porous medium with m = 7% and are  defined at t imes 
2, = 3 and 7, and in addit ion,  curve 2 is computed according to the equa l -p ressure  model.  All curves in Fig. 2a 
correspond to the distance r/ao =32 f rom the center .  It is evident that as the porosi ty  increases  the amplitude 
of the wave and its velocity of propagation decrease  considerably.  Taking into account different p r e s su re s  In 
the mat r ix  and in the pore (curve 3) leads to considerable washing out of the leading front of the wave. This 
effect is manifested even more  strongly for the gas - sa tu ra ted  medium (Fig. 2b). All curves  in Fig. 2b are  
constructed for a medium with m =7%. Curve 1 corresponds  to X=I ;  curve 2 to X=2.7; curve 3 to X=5.4~ and 
curve 4 to ~t =2.7. Curve 4 is a calculation according to the equa l -p re s su re  model and ls presented for com-  
par ison.  Curve 1 c lear ly  shows the shock-wave front, but the s t ress  wave, corresponding to compress ion  of 
the medium with low p r e s s u r e s ,  is a l ready separat ing out at this t ime f rom the base of the wave in the forward 
direct ion.  This is related to the fact that at low p re s su re s  the main s t r e s s  is absorbed by the f ramework,  and 
for this reason,  the medium has a higher modulus of volume compress ion  than at higher s t r e s ses ,  when the 
pores begin to fill up and the compress ion  modulus drops sharply [4-6]. The shock wave corresponding to 
i r revers ib le  pore filling damps out with time and the compress ion  wave moves away into the forward direction.  
Thus, there is a t rans i t ion  f rom the shock-wave regime (curve 1) to a continuous compress ion  wave (curve 3). 
it should be noted that in the equa l -p ressu re  model (curve 4), the wave profile is not t ransformed,  it a!vcays 
damps out in the shock-wave reg ime.  This is what leads to lower elast ic  wave amplitudes in this model, which 
was discussed above. 

In this work,  we study the effect of poros i ty  on the dimensions of the failure zone and the size of the 
cavity as a function of the explosion. Figure 3 i l lus t ra tes  the plast ici ty radius RI, which within the f ramework  
of the chosen model for  the elastoplast io behavior of the medium (1.2) and (1.3) is associa ted  with the radius 
of the failure zone, as a function of the porosi ty  m. Curve 1 corresponds  to a wa te r - sa tu ra ted  and curve 2 to a 
gas - sa tu ra t ed  medium. As the poros i ty  increases ,  the plast ici ty radius R 1 decreases ,  and in addition, this de-  
c rease  is more  noticeable for the gas - sa tu ra t ed  medium. Fig. 4 shows the maximum radius of the c a v l ~  
amax/ao as a function of the poros i ty  m (curve 1 cor responds  to a porous medium with water  and curve 2 with 
gas).  Just  as R 1, amax decreases  with increasing m, and in addition, this decrease  is g r ea t e r  for  a medium 
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with gas .  A charac te r i s t i c  p roper ty  of both curves in Fig. 4 is the s teeper  drop in area x for low porosi t ies  
(m ~ 10%). For large values of m the curves  decrease ,  but more  smoothly at this point, as if they have become 
asymptot ic .  This dependence of the quantity area x on m can be understood if the change in the dissipative 
p rocesses  as  a resul t  of an explosion with an increase  in porosi ty  m is analyzed.  As calculations show, in 
a nonporous medium, the basic mechanism for dissipating the energy of the explosion (up to 50%) is plast ic 
flow. A large  f ract ion of the energy in the explosion (up to 40%) at the initial stage of the cavity expansion 
is t r ans fe r red  tn the form of kinetic energy to the medium surrounding the cavity. Computational resul ts  
indicate the fact that due to gas p r e s s u r e  the cavity expands only at the ear l ies t  t imes (k< 3). Fur ther  ex-  
pansion occurs  mainly due to inert ia,  due to the kinetic energy s tores  in the medium surrounding the cavity. 
This motion becomes slower as energy is dissipated until the cavity stops increasing.  At the same t ime,  the 
cavity overshoots  the equil ibrium position corresponding to quasis tat tc  expansion. In a porous medium, as 
the calculations pe r fo rmed  and experimental  data [13] show, dissipation of the energy in the explosion into 
heat is g r ea t e r  than in a nonporous medium and is related mainly to shock heating of ma t t e r .  In this case,  
the fract ion of the kinetic energy in the porous medium dec reases .  This decrease  in the kinetic fract ion of 
the total energy of the explosion 6 = Ekin/W at the t ime the cavity stops expanding is shown in Fig. 5, where 
curve 1 cor responds  to a wa te r - sa tu ra ted  and curve 2 to a gas - sa tu ra t ed  medium. The g rea tes t  decrease  in 
the quantity 6 is observed in the poros i ty  range 0 < m <  15%, when there is a change in the basic dissipative 
mechanisms (plastic to shock). The decrease  tn the quantity 6 and, therefore ,  the inert ial  forces  leads to 
a decrease  in the values 1R 1 and area x, as noted above. 

The model of the equation of state of the medium with i r r eve r s ib l e  volume deformation used in this work 
[6] yields the pore p r e s s u r e  distr ibution at t imes  when expansion of the gas cavity has a l ready been completed. 
Flgure 6 shows the pore p re s su re  q as a function of the distance for a wa te r - sa tu ra t ed  medium.  Curve 1 c o r -  
responds to m=2.7%; curve 2 to 7%; and curve 3 to 22%. As can be seen f rom this figure,  as a resul t  of the 
explosion, a zone with high pore p re s su re  is formed.  According to [4-6], its origin Is related to the part ial  
pore filling at the compress ion  phase as the shock wave passes .  To the left of the region with high pore p r e s -  
sure ,  there is a gas cavity formed during the explosion and to the right a medium in which the pores  are  not 
filled, which is what leads to the sharp drop in p r e s su re  on the right boundary of the region. As the poros i ty  
increases ,  the size of the zones with high pore p r e s s u r e  increases  and the magnitude of the residual  pore p r e s -  
sure  dec reases  simultaneously.  The presence  of the zone descr ibed above can have an Important  effect on 
fi l trat ion p rocesses  af ter  the explosion. 

2. Dissipation of the Energy of an Explosion in a Porous  Medium with I r revers ib le  Volume Deformation.  
A considerable par t  of the energy of an explosion in a solid medium is dissipated in the mat te r  surrounding the 
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explosive charge.  The energy in the explosion is dissipated on the shock-wave front during plast ic flow of 
mat te r  behind the front.  Par t  of the energy  is t r ans fo rmed  into energy of residual  e las t ic  deformations~ A 
small  f ract ion of the overall  energy  in the explosion is emitted in the form of elast ic  waves.  Many real rocks 
are  porous wit:h some degree of g a s - w a t e r  saturat ion.  For  this reason,  the problem of energy losses  with an 
explosion in porous sa turated media is of considerable in teres t  [8]. 

The problem of energy dissipation with an explosion in a porous medium that is deformed plast ical ly was 
studied theoret ical ly  in [14, 15]. The analysis  ca r r i ed  out in these works is l imited to the case of complete 
collapse of empty pores  on the shock front.  The substance behind the shock-wave front was assumed to be in- 
compress ib le .  For  a more  complete and exact descr ipt ion of the explosion, it is neces sa ry  to take into ac -  
count the variable compress ib i l i ty  of the medium on the shock front and s t r e s s  re l ief  behind the front.  Here, 
i r revers ib le  volume deformations a re  a cha rac te r i s t i c  p roper ty  of porous media [3, 16]. At this point, we 
examine the distr ibution of the energy of a camouflet  explosion in a saturated porous medium taking into ac -  
count this t r revers ib i l i ty .  

We will study the energy  charac te r i s t i c s  of the explosion, the effect of the strength pa rame te r s  of the 
medium, porosi ty ,  and the nature of pore saturat ion on these charac te r i s t i c s .  This analysis  is ca r r i ed  out 
with the help of a numerical  solution of the sys tem of hydrodynamic equations (1.1)- (1.3) taking into account 
the shear  strength of the medium.  However,  at this point, in contras t  to the f i r s t  case,  instead of condition 
(1.3) we use the condition for  CoulombVs plast ici ty 

l~l = c~* ~ kp, (2.1) 

where (r* charac te r i zes  the coupling; k is the increase  in strength of the medium with hydrosta t ic  compress ion .  
According to [3, 16], relat ion (2.1) descr ibes  sa t is factor i ly  the behavior  of rocks under shear  s t r e s s e s .  The 
mult icomponent nature of the medium is taken into account with the help of a model equation of state descr ibed 
in See. 1. 

The energy charac te r i s t i c s  of the medium with the camouflet  explosion variants that were checked are  
presented in Table 1. Here 

'p_g_ E 1 = 4.~ r2dr 

is the kinetic energy of the medium (the integrals  in El, E2, E4, a n d  E 5 are  taken over  the disturbed region); 

E2 = 4g dt j 3 ~ Or --  r~dr is the energy dissipated due to plast ic  flow; T is the shear  s t r e s s  due to plast ic  

flow of the medium; E a = 2u .f P~ezr2dr is the energy dissipated into heat on the shock front; PH and e H = 

1 -  Po/PH are  the p r e s s u r e  and compaction of the medium on the shock fronts;  PH is the density of the medium 
4 f ~ e  

on the shock front; E 4 = E 2 +E 3 is the total thermal  energy in the medium; Ea = 7 ~ ~5 r2dr is the energy 
�9 2 2 

of elast ic  shear  deformations in the medium; E~ = 4u j ~  r~dr is the energy of volume compress ion  of the 

medium; K is the bulk compress ion  modulus of a multicomponent medium; p~ is the backward p re s su re ;  E 7 = 

E5 +E G is the total e last ic  energy s tored in the medium; E 8 ts the energy of the gases  inside the cavity. 

In Table 1, the upper numbers  in each line indicate the fract ion of the corresponding energy with respec t  
to the total energy of the explosion (all values are  given in percent) .  The lower nurabers indicate the fract ion 
of the corresponding energy with respec t  to the energy t ransmi t ted  to the medium surrounding the cavity, i .e. ,  
to the total energy of the explosion minus the energy of the detonation gases  inside the cavity. In what follows, 
we will make compar i sons  with the lower numbers  unless otherwise specified. The data in Table 1 are  p r e - .  
sented for  a t ime when the cavity has attained its maximum radius.  However, since the re tu rn  motion of the 
cavity for  the chosen strength pa rame te r s  (see Table 1) is not large ( < 5% for all variants) ,  the numbers  cha r -  
ac ter iz ing the distr ibution of energies  El, E2, E3, E4, and E s vary  little with the re tu rn  motion of the cavity. 
The value of E 5 depends considerably on the re turn  motion, which is d iscussed in g rea t e r  detail in what follows. 

In ca r ry ing  out the calculations according to the technique indicated above, we varied the coupIing p a r a m -  
e ters  cr * and the strengthening coefficient k, the magnitude of the back p re s su re  pr162 the initial porosi ty  of the 
medium, and the nature of the saturat ion of the porous space (gas or  liquid). The variants  of the computations 
1-6 correspond to the case of a monolithic medium with 0 poros i ty .  They show that for a monolithic medium 
most  of the energy of the explosion was dissipated with the plast ic flow. An increase  in cr* leads to a weak 
increase  in energy E 2 and decrease  in E 3. On the whole, however,  the quantity E4= E 2 = E 3 varies  li t t le.  As 
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T A B L E  1 

Variantl of medium 
No. 1 Type 

10 

11 

I 
1 Monolith 

2 )> 

4 t 
5 >, 

6 >> 

Porous with liquid 

t2 Porous with liquid* 

i3 Porot~ with gas 

14 

t5 

C/*, I Poo' ira'%bar ~ bar ~' 

- -  i 5 0  - -  t 8 0  6 3  
619 

-- i50 --  390 60 6',7 

-- 390 --  300 168 

1 7:8 
-- t50 O,i 200 14.6 

1 5,2 

-- t50 0,31 200 4,0 
4,7 

-- 150 0,6 209 4,04,7 

t2 150 --  100 45 
52 

12 30O 5,1 
5,8 

t2 300 -- iO0 53 
5,9 

12 309 - -  320 50] 
m 

518 
I 

23 i50 [t85 4,0 
i 4,5 

23 150 t85 3 2 |  
3:6 t 

2,7 150 -- 220 421 
4',8 ! 

2,7 300 -- 250 4,31 
5,0 [ 

E~ 

36�9 
40 

3 2  

35 
49 

47 
53 

50 
58 

50 
59 

32 
35 

35 
40 

33 
38 

28 
32 

28 
32 

27 
3t 

25 
28 

26 
39 

t7 
20 

E~, E, 

28 64 
3t 71 

29 6i 
32 68 

25 60 
29 69 

2t 68 
24 77 

22 72 
25 83 

21 71 
25 84 

42 74 
47 82 

38 73 
43 83 

38 71 
44 82 

40 68 
46 78 

46 74 
52 84 

49 
55 

a9 
78 

43 I 69 
50 80 

62 I 82 7t 94 

i E~ E~ E7 E, 

6,0 t 4  20 I 9,3 
in,4 22 6,6! ~" 

i5,3118 23,31,0 5,91 0 26 I 
16,7 i4  0,7112,5 

7,7 i6 23,7 

4,4 1i 15,4 [ tt,5 
5,0 t2,5 t7,5 

]3,3 7,3 10.6 t4 
3,8 8,5 t2~3 

2,7 9o116 
8,', to:7 
5,5 6,2 tl,71 to 
6,t 6,9 13 

6,6 2,6 9,21 t2,5 
7,5 3,0 t0,5 

6,2 4,4 10,6I t3 
7,i 5,1 12,2 

5,6 7 5 I t3,i I 13,5 
6,4 8:7 t5,t 

5 8110,  I 5,t t1,6! 
I 4,5 %01tl,5 

5:t 5,1 t0,2 

4 31 ii,o 15.3 tl 4,8 12,5 17;3 , 

I ~9 8,~ 1t3, 5 <7 9,~ 15 

* Y = 500 b a r .  

the  p a r a m e t e r  q* i n c r e a s e s ,  the  f r a c t i o n  of t he  k i n e t i c  e n e r g y  El ,  wh ich  can  be  a s s o c i a t e d  wi th  the  k i n e t i c  
e n e r g y  of t he  e l a s t i c  wave ,  i n c r e a s e s  a s  w e l l .  T h e  i n c r e a s e  in  E 1 s t e m s  f r o m  the  f ac t  t ha t  a s  a*  i n c r e a s e s  
the  a m p l i t u d e  of  t he  e l a s t i c  wave  i n c r e a s e s .  The  e l a s t i c  e n e r g y  of vo lume  d e f o r m a t i o n  E~ d e c r e a s e s  wi th  an  
i n c r e a s e  in a * .  A s  c a l c u l a t i o n s  show,  t h i s  i s  r e l a t e d  to  the  f ac t  t h a t  a s  a *  I n c r e a s e s  the  s t r e s s  wave  b e c o m e s  
c o n s i d e r a b l y  n a r r o w e r  (h igher  h a r m o n i e s  p r e d o m i n a t e  In i t s  f r e q u e n c y  s p e c t r u m )  with  a w e a k l y  i n c r e a s i n g  
wave  a m p l i t u d e .  T h i s  l e a d s  to  a d e c r e a s e  in the  r e g i o n  w h e r e  the  m e d i u m  u n d e r g o e s  s t r o n g  vo lume  c o m p r e s -  
s i o n  and ,  t h e r e f o r e ,  to  a d e c r e a s e  in t he  m a g n i t u d e  of  the  e n e r g y  Es. In c o n t r a s t  to  EG, the  q u a n t i t y  E 5 i n -  
c r e a s e s  wi th  an  i n c r e a s e  in o*, s o  tha t  the  m a g n i t u d e  of  the  s h e a r  s t r e s s e s  i n c r e a s e s .  

In c a l c u l a t i n g  e x p l o s i o n s  I n a  m o n o l i t h i c  m e d i u m ,  we v a r i e d  the  s t r e n g t h e n i n g  p a r a m e t e r  of  the  m e d i u m  
k.  The  r e s u l t s  of  the  c a l c u l a t i o n s  show tha t  s m a l l  v a l u e s  of k have  the  s h a r p e s t  e f fec t  on the  d i s s i p a t i v e  p r o -  
c e s s e s  ( c o m p a r e  v a r i a n t s  1 and 4 in  T a b l e  1). C o m p a r i s o n  of v a r i a n t  4 and 5 and 6 shows  t ha t  f u r t h e r  i n c r e a s e  
in  k h a s  a l e s s  n o t i c e a b l e  e f f ec t  on the  d i s s i p a t i v e  p r o c e s s e s .  T h e  r e s u l t s  of  the  c a l c u l a t i o n s  show tha t  the  
m a g n i t u d e  of t he  c a v i t y  e x p a n s i o n  i s  d e t e r m i n e d  by  two m e c h a n i s m s .  The  f i r s t  one,  c a l l  i t  a q u a s i s t a t t e  m e c h -  
a n i s m ,  i s  r e l a t e d  to  the  e x p a n s i o n  of  the  c a v i t y  due to the  p r e s s u r e  of g a s e s  p r e s e n t  in  t he  c a v i t y .  T h i s  e x -  
p a n s i o n  con t inues  un t i l  the  s t r e n g t h e n i n g  f o r c e s  of  the  m e d i u m  s u r r o u n d i n g  the  c a v i t y  no l o n g e r  b a l a n c e  the  
g a s  p r e s s u r e  in i t .  The  s e c o n d  m e c h a n i s m ,  which  we w i l l  r e f e r  t o  a s  d y n a m i c ,  s t e m s  f r o m  the  a v a i l a b l e  
k i n e t i c  e n e r g y  s t o r e d  in  t h e  m e d i u m  s u r r o u n d i n g  the  c a v i t y .  Moving  out f r o m  the  c e n t e r ,  the  m e d i u m  p e r m i t s  
the  c a v i t y  to  expand .  The  h i g h e r  the  i n i t i a l  k i n e t i c  e n e r g y  s t o r e d  in the  m e d i u m ,  t he  g r e a t e r  w i l l  be t he  s i z e  
of the  c a v i t y  wi th  o t h e r  p a r a m e t e r s  of  the  p r o b l e m  r e m a i n i n g  unc ha nge d .  The  t i m e  d e p e n d e n c e  of the  e n e r g y  
E l i s  g i v e n  in  [17].  It l s  shown tha t  the  m a x i m u m  va lue  of E 1 o c c u r s  a t  the  e a r l i e s t  t i m e s  d u r i n g  the  e x p a n s i o n  
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of the cavity due to the energy of the gases  in the cavity. Later  on, the dissipative p rocesses  in the medltvm 
decrease  the magnitude of E t, and the efficiency of the dynamic mechanism for  the expansion of the cavity is 
determined according to how this dissipation proceeds .  As a whole, taking into account the quantity k leads 
to a decrease  in the values of the energy E 1 at initial cavity expansion t imes as well as at later  t imes 
.the high strength during the initial cavity expansion, when high p re s su re  leads to a lower acce lera t ion  of the 
medium surrounding the cavity) and to a g r ea t e r  plast ic  energy dissipation. This leads to a decrease  in the 
efficiency of the dynamic mechanism for  cavity expansion {therefore, to a smal le r  cavity radius) and to a de.- 
c rease  in E 5 and E G. The resul ts  of the calculations for  the medium with ze ro  poros i ty  indicate the fact  that 
the dominant mechanism for  energy dissipation in the cavity is plast ic  flow. We note that this result  coin= 
cities with the conclusions in [14, 15, 17]. 

The variants 7-12 of the computations correspond to the case of a porous medium saturated with liquld. 
All the conclusions a r r ived  at above for  the dependence of the dissipation of the energy in the expioslon on the 
p a r a m e t e r  ~ * are  valid as well for  saturated porous media with the single difference that these dependences 
are  less  s t rongly manifested.  Calculations for porous rock saturated with liquid show that a considerable 
f ract ion of the energy in the explosion is dissipated on the shock front (~40-55%). The energy E 3 exceeds by 
10-15% the energy E2, which determines  the dissipation in the medium with ze ro  porosi ty.  The effect of the 
back p r e s s u r e  Poo on the dissipative p roces se s  during the explosion can be understood f rom the calculations 
8-10. F rom these it can be seen that the back p r e s s u r e  has the grea tes t  effect on the quantity E 6, which is 
understandable considering that the energy E 6 is mainly related to the wave front and is proport ional  to the 
difference 2 2 p --p~ = (p +p~) (p-p~o), while the excess  p r e s su re  p over  the back p res su re  P~o in the wave, as the 
calculations per formed show, is prac t ica l ly  independent of the quantity Poo" For  fixed poroMty and t3-pe of pore 
saturation,  the dependence of the energy E 6 on the quantity Poo is l inear .  For  the calculations 8-10, it can be 
represented  in the form 

E6 = 3.0 + f8.3p**, 

where E, is expressed  in percent  and Poo in ki lobars .  It should be noted that the calculation resul ts  show also 
that the magnitude of the energy E 6 is related mainly to the elast ic  wave front,  ff we take into account that the 
total energy of the e las t ic  wave is made up of the kinetic energy and the energy of volume compress ion  in the 
wave (the contribution of shear ing energy  is small  due to the shear  deformations in the elast ic  wave), then we 
can conclude that as the magnitude of the back p re s su re  increases ,  the energy in the elast ic  waves emitted by 
the explosion increases  (for the variants  8 and 10, the sum E l +E 6 increases  by a fac tor  of 1.5). 

Variants 11 and 12 clar i fy the effect of the pa r ame te r  Y on the dissipation of the energy of the explosion. 
Calculation 12 cor responds  to a medium with the smal les t  strength of mlcropar t lo les  that form it with other 
conditions remaining unchanged. It is evident f rom the resul ts  in Table 1 that variat ion of Y has !tffde effect 
on the dissipative p roces se s .  Onlythe values of E 1 and E 5 deereaseno t iceab ly  with a decrease  in Y. Apparently, 
this is re lated to the somewhat g rea t e r  energy  dissipation on the shock front.  In a porous medium saturated 
with liquid the thermal  energy dissipation as a whole is g r ea t e r  than in a nonporous medium. For  a ga s - s a tu -  
rated medium, the value of the energy  E 4 becomes even g rea t e r  and can attain 95% of the energy tha~ is given 
up by the cavity to the surrounding medium. 

Variants 13-15 represent  calculations in a gas - sa tu ra ted  medium. It is evident f rom these that a gas -  
saturated medium is charac te r ized  by a lower  kinetic energy and lower,  even in compar ison with a medium 
saturated with liquid, plast ic  dissipation. The bas ic  mechanism for  dissipation for  this medium is dissipation 
of energy on the shock front due to i r r eve r s ib le  pore collapse. The dependences on the pa rame te r s  cr * and p~ 
have the same charac te r i s t i c  features  as for a nonporous or  l iquid-saturated medium. 

One of the resul ts  of the work is the construct ion of the dependence of each of the dissipative energies 
entering into Table 1 on the poros i ty  of the medium. These dependences are  shown in Figs.  5, 7, and 8. All 
curves  are  constructed for  values of a* =150 bar ,  k=0 ,  p:o=180 bar,  and charac te r ize  dissipative p rocesses  
with respec t  to the emitted energy {the lower  numbers  in each line in Table 1). Curves 1 and 2 in Fig. 5 i l lus-  
t ra te  the dependence of E 1 on the poros i ty  m for  a l iquid-saturated and gas - sa tu ra ted  porous medium, r e spec -  
t ively.  The grea tes t  d e c r e a s e  in E 1 for  curve 1 occurs  in the poros i ty  range 5-15 vol. %. Low porosi t ies  have 
a lmost  no effect on the radiated kinetic energy.  For  a gas - sa tu ra ted  medium, the drop in energy E 1 occurs  
over the entire poros i ty  range,  and in addition, the most  rapid drop occurs  for smal l  values of the porosi ty.  
Both curves  1 and 2 for m > 15% decrease  comparat ively  weald y. This indicates the fact that E 1 becomes 
prac t ica l ly  unchanged for high porosi t ies  for  a l iquid-saturated as well as for a gas - sa tu ra t ed  medium. Fig. 7 
i l lus t ra tes  the dependence of the energies  E2, E~, and E 4 on the poros i ty  m (curves 1 and 2 correspond to E2; 
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3 and 4 to E3; 5 and 6 to E4, respect ively ,  for  the liquid- and gas - sa tu ra ted  medium). The calculations show 
that the decrease  in the value of E 2 and i nc r ea se in  the values of the energies  E 3 and E 4 are most  
sharply manifested in a gas - sa tu ra ted  medium. A cha rac te r i s t i c  feature of all curves  in Fig. 7 is that 
they are  asymptot ical ly  independent of porosi ty.  These asymptotes  are  equal and have the values for  
curve 1, 31-30%; 2, 15-16%; 3, 52-53%; 4, 79-80%; 5, 86-87%;and 6, 94-95%. This indicates that for h ighporos i ty  
dissipative p r o c e s s e s  proceed in the same manner  and depend mainly on the nature of the pore sa tura -  
tion (gas or  liquid). The increase  in the magnitude of E 3 is related to the i r r eve r s ib le  part ial  o r  com-  
plete pore collapse on the shock front. The large dissipation of energy on the shock front dec reases  
the efficiency of the dynamic mechanism for cavity expansion, which in turn leads to a lower maximum 
cavity radius and smal le r  shear  deformations and, therefore ,  to a lower value of the energy E 2. Fig. 8 
shows the elast ic  energies  Es, E6, and E 7 as a funct ion of the porosi ty  (curves 1 and 2 cor respond to 
Es; 3 and 4 to E6; 5 and 6 to ET, for liquid- and gas - sa tu ra ted  media,  respect ively) .  As can be seen from Fig. 8, 
the value of the shearing energy E~ for the l iquid-saturated medium is pract ical ly  independent of the porosi ty,  
while for  the gas - sa tu ra ted  medium a substantial drop is observed only for low poros i t ies .  The volume elast ic  
energy E~ and the total e last ic  energy E 7 decrease  s trongly with an increase in porosi ty .  As calculations show, 
mos t  of the energy E~ is concentrated in the immediate vicinity of the cavity. For  this reason,  it can be a 
source of secondary  elast ic  waves.  The energy E 5 is prac t ica l ly  t rans formed  intothe cavity energy E 8 with the 
r eve r se  motion of the cavity.  

Analysis  of energy dissipation in a saturated porous medium leads to the following resul ts .  In contras t  
to a medium with zero  porosi ty ,  where the main mechanism for dissipating the energy of the explosion is plast ic 
flow, in a porous medium energy is dissipated p r imar i ly  on the shock front.  The conclusion that there is a 
considerable increase  in the magnitude of the energy E~ with an increase  in poros i ty  is supported by the r e -  
stilts of experimental  investigations [13]. A large part  of the energy of the explosion turns  out to be stored 
in elast ic  compress ion  and shear  deformation energy,  and, in addition, the la t ter  is revers ib le  and apparently 
can become a source  of secondary  elast ic  waves af ter  the explosion. As the back p res su re  increases ,  the 
elast ic  energy of volume compress ion  which is concentrated on the elast ic  wave front increases ,  leading to 
an increase  in the energy in this wave. In compar ison to the gas - sa tu ra ted  medium, pore saturat ion by a liquid 
approximates  the energy charac te r i s t i c s  of an explosion by an explosion in a medium with zero  porosi ty ,  i.e., 
by an increase  in the mechanical  effect of the explosion. The resul ts  of the present  work agree  qualitatively 
with the basic  conclusions of [17]. There  is a noticeable difference only in the decrease  in the magnitude of 
the energy E 1 with increasing porosi ty .  In [17], this decrease  is underes t imated due to the use of a physical  
model for the medium with equal p r e s s u r e s  in all components,  which at low p r e s s u r e s  does not descr ibe  the 
fact that the solid f ramework  of the porous medium ca r r i e s  the main load. 

3. Dissipation of Energy in the Near Zone with an Explosion in a Porous Medium. Since the amplitude 
of the shock wave in the d i r e c t  vicinity of the center  of the explosion is large (~ 100 kbar), energy  dissipation 
in the near  zone is important .  It leads to the format ion of zones in which the medium is vaporized andmel ted  
and has a large  effect on the nature of subsequent wave propagation and damping. 

In solving such a problem, it is important  to note that with such s t r e s s e s  on the shock front the strength 
proper t ies  of the medium can be neglected and then the only mechanism for thermal  losses  of energy of the 
explosion will be shock heating of the medium. 

The star t ing sys tem of hydrodynamic equations describing the explosion assuming spherical  s y m m e t r y  
has the following form in Eulerlan coordinates :  
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0-'Y T u ~ :  r : v ~ " ; (3.1) 

~u au Op.  
~-i- + u Tr = -- v ~Tr' (3.2) 

~ a~,  ;o~ ~ ' 1 = 0 ,  (3.3) 

where v and e are  the specific volume and specific internal energy of the medium; u is the velocity; p is the 
p re s su re ;  r is the Eulerlan coordinate.  The sys tem of equations (3.1)-(3.3) is closed by a Mie -Grune i s en  
equation of state.  

In the calculations,  the source  of the explosion was modeled as a gas cavity expanding according to an 
adiabatic law with initial size a0 and initial p r e s su re  P0. Here,  a 0 was taken as the radius of format ion of the 
shock wave (the time for  format ion of the shock wave can be taken [18] as its separat ion f rom the front of the 
thermal  wave). The p re s su re  P0 constituted 8 mbar .  The mat te r  in the cavity was assumed to be an ideal gas 
with constant adiabatic index T= 1.4. 

The sys tem of equations (3.1)-(3.3) can be solved exactly only by numerical  methods.  However, in o rder  
to attain a qualitative understanding of the effects accompanying the explosion, the sys tem indicated can be 
solved within the f ramework  of the model in [14] without taking into account the strength proper t ies  of the 
medium. Following [14], let us assume that ma t te r  is compressed  i r r eve r s ib ly  f rom a density P0 to a density 
Pl on the shock wave front.  This compress ion  is charac te r ized  by the pa rame te r  s = l - P o / p  i. The medium 
behind the shock wave is assumed to be incompress ib le .  For this reason,  the equation of state of the medium 
and Eq. (3.3) a re  not di rect ly  required for descr ibing the dynamics of the explosion within the f ramework  of 
this model .  The boundary conditions on the cavity a (t) and on the shock front R (t) a re  as follows: 

u(R) = eR, u(a) = a, (3.4) 
p(R) = (l/S)poU2(R), p(a) = po(ao/a)aV. 

In Eqs.  (3.4), the back p re s su re  has been omitted, since in examining the initial stage of the explosion it can be 
neglected. Taking into account the incompress ibi l i ty  behind the shock front it follows f rom Eq. (3.1) that 

~ = a a 2 / r  ~ 

Substituting this relat ion into (3.2), integrating with respec t  to r and using the boundary conditions (3.4) 
on the cavity, we obtain the p r e s s u r e  distr ibution behind the shock front 

'r ~ ~-p~ --9, act+ + a  s . (3.5) 

Knowing the laws describing propagation of the shock wave R (t) and the expansion of the cavity a (t), it is pos- 
sible to calculate with the help of (3.5) the pressure  in the zone a-< r < R. The function a (t) is obtained by solv- 
ing the camouflet equation, which Is obtained by substituting the boundary condition on the shock front (3.2) 
into (3.5). The camouflet  equation has the form 

dy t / 2P~ 

~ t  = l / V ] ,  x = a/ao,  
dx 

2g . - - 2 - f f @ ~ \ - f f /  ]/ ' 

" a 81/3x 
Y = x ~ '  - / Y  = i x  3 - -  ( i  - -  ~ ) l  1/3" 

(3.6) 

The initial conditions for  Eqs. (3.6) for t0=0 will be x0= l  and yo=Poe/poa~. 

The asymptot ic  solution of (3.6) for x>>l was obtained in [14]. In this case a / I t  =~1/3 and Eq. (3.6) can 
be easi ly integrated.  Since we a re  studying the near  zone (x ~ 1), such a solution is not applicable. The camou-  
flet equation (3.6) can be solved numerica l ly  on a computer ,  but an approximate analytic solution is also pos-  
sible. In o rder  to solve the camouflet equation (3.6), the nonintegrable factors  in it were replaced by in ter -  
polating [ntegrable express ions .  These express ions  were  chosen so that the asymptot ic  behavior  of the exact 
solution of Eq. (3.6) and the interpolated solution coincided for  x>>l and for x =1. The interpolated solution of 
the camouflet  equation (3.6) constructed in this manner  has the form 

y(x) 2(l--e) Po [x_ t@a~(  -8"~f" 1 f x [-i sx l l  s - t 
2,a -- 37 -- --~- ,-{- i 
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1,. , , )] 
2F-- 3V-- t/~ + l ._  s~/a~ 2~-- 3V xs (2F .-_" 37 .3 )  

(3.7) 

3/2 - -  e l'za -- + e 4/a 

~ ' =  t - -  8 l / a  

C o m p a r i s o n  of the solution (3.7) with the exact  numer i ca l  solution of Eq. (3.6) shows that  they ag ree  s a t i s -  
fac tor i ly  {the deviat ion of the in terpolat ion solution f r o m  the exact  solution does not exceed 15% over  the en t i re  
range  of var ia t ion  in x). For  x >>1, the solution (3.7) t r a n s f o r m s  into the solution obtained in [14]. Using solu-  
t ion (3.7), we obtain the law governing the damping of the shock wave ampli tude 

P0a2o [ ~ a  4 Poa~SX/ax4y (x) 
p (R)  = - g  I~ 3 - (t - 8)1 ̀ /8 ( 3 . 8 )  

and the ene rgy  d iss ipa ted  on the shock front  

i 8 a~ee,4/axay (x) 
E (x) = - ~ p  (x) ~ = 2 Ix a - -  (1 - -  s)] 4/a" (3.9)  

In o r d e r  to provide  a physica l  in te rpre ta t ion  of the computat tonal  r e su l t s  using the chosen models  [14], it is 
a s sumed  that  the compact ion  s is r e la ted  to i r r e v e r s i b l e  pore  col lapse .  In this case ,  it is found that  s =m,  
where  m is the init ial  po ros i ty .  The med ium behind the shock wave in all  the calculat ions was a s su med  to 
be nonporous with densi ty  Pt =2.65 g/cmS; at  the s ame  t ime ,  ECx), defined by Eq. (3.9), will r e p r e s e n t  the 
in ternal  t h e r m a l  ene rgy  of the m ed i um .  According to [18], the spec i f ic  in ternal  t h e r m a l  ene rgy  is the c r i t e r ion  
for  s o l i d - l i q u i d  and l i q u i d - v a p o r  phase  t r ans i t i ons .  Some range  of values of this  energy  co r re sponds  to a 
mixed s ta te  of phases .  Let E B be the upper  l imi t  of the energy  in te rva l  for  the so l i d - l i qu id  phase  t rans i t ion ,  
i .e . ,  E B is the m i n i m um  spec i f ic  ene rgy  for  which the m a t t e r  can exis t  in a comple te ly  mel ted  s ta te ,  and E H 
is the lower  l imi t  for  a l i q u i d - g a s  phase  t rans i t ion .  Specific values  of these  quant i t ies  were  chosen as  follows: 
E B = 500 k J / k g  and E H = 4000 k J / k g .  

Figure  9 shows the in terna l  t h e r m a l  ene rgy  of the med ium as a function of the quantity r/ao for  different  
poros i t i e s  (curve 1 co r r e sponds  to m = 6%; 2, 20%; 3, 30%; 4, 50%; and 5, 60%), computed f r o m  Eq. (3.9). If 
the mutual  posi t ions  of cu rves  1-3 a r e  compared ,  then it is evident that  init ial ly,  as the poros i ty  i n c r e a s e s ,  the 
amount  of t h e r m a l  ene rgy  i n c r e a s e s  monotonica l ly .  For  a poros i ty  m 5  50%, the t he rma l  energy  nea r  the cavi ty  
continues to i n c r e a s e ,  while for  l a rge  values of the radius  (r/a0 ~ 3-4),  due to the s t rong damping of the shock 
wave,  the quanti ty of t h e r m a l  e n e r g y  b e c o m e s  l e s s  than fo r  po ros i t i e s  m <  50%. The dependences i l lus t ra ted  
in Fig. 9 p e r m i t  de te rmin ing  the m a s s  of the me l t  and the f rac t ion  of the total  ene rgy  in the explosion ~? con- 
rained in it as  a function of po ros i ty .  These  dependences a r e  shown in Figs.  10 and 11, r e spec t ive ly  (curve 1 
in both f igures) .  Curve  1 in Fig. 10 indicates  the fact  that  the m a s s  of the me l t  i n c r e a s e s  s t rongly  with an 
i nc rea se  in po ros i ty  over  the range 0 < m <  20%. Fo r  20%<m< 40%, the m a s s  of the me l t  r e m a i n s  p rac t i ca l ly  
unchanged, while fo r  m > 40% it begins  to d e c r e a s e .  Such behav io r  can be explained by the compet ing act ion 
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of two m e c h a n i s m s .  The ene rgy  of shock compres s ion  is propor t ional  to the product  of the shock wave a m -  
plitude p(R) and the compact ion on the shock front  e. As the poros i ty  lncreases~ ~ i n c r e a s e s ,  and p(R) de -  
c r e a s e s  as  a r e su l t  of the inc rease  in energy  diss ipat ion.  Fo r  low poros i t i e s ,  the inc rease  in e p reva i l s  
over  the dec r ea se  in p(R), and fo r  l a rge  values ,  vice v e r s a .  Curve 1 in Fig. 11 has  the s a m e  f o r m  with a 

m a x i m u m .  Calculat ions according  to the model  in [14] gives the m a x i m u m  poss ib le  value fo r  the heat  ene rgy  
of the me l t  as  30%. This  value is at tained fo r  m ~20% and r e m a i n s  unchanged up to m ~50%. 

The r e su l t s  of the calculat ions based  on the model  in [14] only give the c o r r e c t  qual i tat ive understanding 
of the d iss ipa t ive  p r o c e s s e s  in the nea r  zone of the explosion, s ince they do not take into account  the var iab le  
compact ion of the med ium on the shock f ront  and subsequent  expansion of the med ium behind the shock front ,  
which is mos t  impor tan t  for  low poros i t i e s .  In o rde r  to take into account these  f ac to r s ,  It is n e c e s s a r y  to 
solve the s y s t e m  of equations (3.1)- (3.3) numer ica l ly  on a computer .  In the p re sen t  work ,  this s y s t e m  of 
equations was solved numer i ca l ly  with the help of the di f ference scheme  descr ibed  in Sec. 1. The medium 
before  the explosion was a s s um ed  to be porous  and containing pores  sa tu ra ted  with gas .  With compress ion ,  
the pore  space  on the shock front  is so r ted  out and fu r the r  c o m p r e s s i o n  occurs  with the continuous m a t e r i a l .  
The continuous m a t e r i a l  was descr ibed  by a M l e - G r u n e i s e n  equation of s ta te  [18] with the following p a r a m -  
e t e r s :  initial  densi ty  2.65 g / c m  ~, p las t ic  veloci ty  of sound 4500 m / s e c ,  and Gruneisen  coefficient  1. 

The numer i ca l ly  computed dependence of the t h e r m a l  energy  of shock c o m p r e s s i o n  on dis tance is p r e -  
sented in Fig. 12 (curve 1 co r r e sponds  to m =0; 2, 6%; 3, 10%; 4, 20%; 5, 30%). Curves  6 and 7 r e p r e s e n t  
curves  1 and 21 in Fig. 9 and a r e  drawn for  a compar i son .  The dashed l ines  s epa ra t e  out the mel ted  zone. 
A zone with pa r t i a l ly  or  comple te ly  vapor ized  rock,  which can be a s sumed  to be the gas  cavi ty  fo rmed with 
the explosion,  is located above the upper  l ine.  Expanding, this gas  cavi ty  gives  up pa r t  o f  i ts  energy  to the 
surrounding med ium in the f o r m  of kinet ic  ene rgy  and work  on overcoming the s t rength  f o r c e s .  However ,  
as numer i ca l  calculat ions show, cons iderable  expansion of the vapor ized  rock  will occur  a l ready  a f t e r  the 
shock wave p a s s e s  the boundary of the ent i re  me l t  zone. With fu r the r  expansion of the gas  cavi ty ,  the me l t  
zone will not i nc rea se ,  s ince the mel t ing  is re layed  to shock heating and the ampli tude of the shock wave by 
this t ime  will ]be l e s s  than that r equ i red  for  mel t ing .  

It is evident f r o m  Fig. 12 that  in the range  of poros i t i e s  studied (0<m<30%) the amount  of t he rma l  en-  
e rgy  i n c r e a s e s  with inc reas ing  m.  Compar i son  of curves  2 and 6, as  well as  4 and 7, indicates  that ca lcula-  
t ions based  on the model  in [14] for  low poros i t i e s  underes t ima te  ene rgy  dissipat ion,  while fo r  high poros i t i e s  
they o v e r e s t i m a t e  it. This  is a l r eady  evident f r o m  the r e su l t s  p resen ted  in Fig. 11, where  curve  2 indicates 
the f rac t ion  ~? of the t he rm a l  ene rgy  out of the total  energy  of the explosion in the me l t .  As the poros i ty  
i n c r e a s e s ,  with m > 25%, this curve becom es  asympto t ic ,  equal approx imate ly  to 22%. Thus,  the m a x i m u m  
poss ib le  heat  ene rgy  t r a n s f e r r e d  to the m e l t  can be 22% of the overa l l  energy  of the explosion.  Curve 2 in 
Fig. 10, i l lus t ra t ing  the i nc rea se  in m a s s  of the me l t  in compar i son  with a nonporous med ium (i.e., M-M0,  
where  M 0 is the m a s s  of the me l t  with m = 0 ) ,  a l so  becomes  a horizontal  asympto te  for  high po ros i t i e s .  Anal-  
ys i s  of the numer i ca l  r e su l t s  indicates  the fact  that for  low poros i t i e s  0 < m < 8% the amount  of me l t  i n c r e a s e s  
accord ing  to a power  law 

. 1 l =  98 + 0.25m~-L (3.10) 

Curve  3 indicates  the dependence of the total  quantity of me l t  on the poros i ty ,  obtained with the help of n u m e r -  
ical ca lcula t ions .  C o m p a r i s o n  of cu rves  1 and 3 shows that  the model  in [14] unde re s t ima te s  the m a s s  of the 
me l t  for  low values of m and o v e r e s t i m a t e s  it for  high po ros i t i e s .  
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Let us b r ie f ly  s u m m a r i z e  the main  r e su l t s .  Solution of the s y s t e m  of equations (3.1)- (3.3) with the help 
of the model  in [14] and its numer ica l  in tegra t ion gives the m a s s  of the me l t  and its t h e r m a l  energy  as  a func- 
tion of the poros i ty ,  which agree  qual i ta t ively.  The c h a r a c t e r i s t i c  fea ture  of both dependences is the p re sence  
of an e x t r e m u m  for  m ~20-40%. According to numer i ca l  calculat ions,  the quantity of heat  energy  in the me l t  
cannot exceed 22% of the total  energy  in the explosion.  For  low poros i t i e s ,  the m a s s  of the me l t  i n c r e a s e s  
according  to a power  law (3.10). 

4. Explosion in a Medium with Radial ly Nonuniform Strength P r o p e r t i e s .  When explosions  a r e  se t  off 
in m a s s i v e  rocks ,  spat ia l  nonunlformity of the s t rength  p r o p e r t i e s  of the rocks  is often encountered.  This  
nonuniformIty can be re la ted  to the change in the phys icomechan ica l  p r o p e r t i e s  of the rock  (e.g., due to 
the di f ference in poros i ty  or  nature  of sa tu ra t ion  of the pore  space :  gas  o r  liquid), as  well  as  to the change in 
its chemical  composi t ion.  Under na tura l  conditions, such nonuniformity usual ly  has  a l aye red  spat ia l  s t ruc tu re ,  
i.e~ it cons is ts  of a l te rnat ing  s t r a t a  of different  rocks  or  a single s t r a tum,  but with different  mechanica l  p r o p -  
e r t i e s .  However ,  the nonuniformity of phys icomechanlca l  p r o p e r t i e s  can a lso  have a radia l  c h a r a c t e r .  For  
example ,  radia l  nonuniformity a r i s e s  a f t e r  an underground camoufle t  explosion.  If two success ive  explosions 
a re  se t  off at  the s ame  locat ion,  then the s t r e s s  wave a r i s ing  with the second explosion will propagate  through 
the cavity or  the med ium par t i a l ly  des t royed  by the f i r s t  explosion,  which has a definite effect  on the dynamics  
of the development  of the second explosion.  At this  point, we will examine the effect  of radia l  nonunlformity in 
the phys icomechanica l  p r o p e r t i e s  of the med ium nea r  a camouf le t  cavity,  c rea ted  by the f i r s t  explosion, on the 
development  p r o c e s s  of the second explosion.  

We will a s s u m e  that  the radia l  nonunlformity is c rea ted  as a r e su l t  of the f i r s t  explosion in the med ium 
sa tura ted  p r i m a r i l y  by liquid and having some  gaseous  poros i ty .  We a s sume  that  faUure of the m a t e r i a l  in 
the med ium occurs  on the front  of a p las t ic  wave [14]. Some t ime a f t e r  the f i r s t  explosion,  the pore  liquid wets  
the contacts  between the c rushed  pieces  and d e c r e a s e s  the coupling. Fo r  this r eason ,  the coupling in t hep l a s t i c  
flow zone due to the  f i r s t  explosion,  which we will r e f e r  to as the fa i lure  zone of the medium,  will be cons ide r -  
ably l e s s  than in the med ium with no fa i lure .  Moreover ,  It is well  known [19] that  the l iqu id-sa tura ted  med ium 
shows a lmos t  no s t rengthening p r o p e r t i e s  such as d ry  f r ic t ion.  For  this reason ,  it may  be a s sumed  that in the 
fa i lure  zone a r i s ing  with the f i r s t  explosion the tangential  s t r e s s e s  a r i s ing  with the second explosion a re  ab-  
sent .  We will r e f e r  to this zone as the f i r s t  zone (zone 1). We will denote Its  initial  and instantaneous radi i  
as  b 0 and be r e spec t ive ly .  In the f a i l u r e - f r e e  zone (zone 2), the tangential  s t r e s s e s  a r i s ing  with the second 
explosion di f fer  f r o m  ze ro .  We will a s s u m e  that the cavi ty  fo rmed  a f t e r  the f i r s t  explosion is filled by the 
pore  liquid and p ieces  of c rushed  rock .  

Now, a second explosion is se t  off in this p r e f o r m e d  med ium,  which we will desc r ibe  as follows. A ssu me  
that init ial ly the energy  of the second explosion W is l ibe ra ted  In a spher ica l  region with d imension  a0. We 
will  a s s u m e  that the m a t t e r  in the cavity is an ideal gas with a constant  adiabat ic  index ~/= 1.4. In o rde r  to 
desc r ibe  the mot ion  of the medium,  it is n e c e s s a r y  to use  a s y s t e m  of hydrodynamic  equations (1.1) and (1.2) 
that takes  into account the s t rength ef fec ts .  The p las t ic  p r o p e r t i e s  of the med ium were  taken Into account 
using Coulomb 's  law (2.1). 

The s y s t e m  of equations indicated can be solved exact ly  only by numer ica l  methods .  However ,  in o rde r  
to unders tand the effects  accompanying the second explosion qual i tat ively,  it can be solved within the f r a m e -  
work  of the model  in [14]. Following [14], we a s s u m e  that  m a t t e r  is c o m p r e s s e d  i r r e v e r s i b l y  f rom the densi ty  
P0 to a densi ty  Pt on the shock-wave f ront .  This  c o m p r e s s i o n  is cha r ac t e r i z ed  by the p a r a m e t e r  ~ = l - p o / p  t .  

The med ium behind the shock front  is a s sumed  to be incompress ib l e  and p las t ic .  Fo r  this r eason ,  the energy  
equation in (1.1) and Eq. (2.1) can be omit ted.  The boundary conditions on the cavi ty  of the second explosion 
a it) and on the shock f ront  R {t) have the f o r m  

u ( R )  = i t s ,  u (a )  = a,  a r ( R  ) = - -poU~ - -  p ~ ,  (4.1) 

ar(a ) ----- _ p o ( a o / a ) ~ ,  

where  Pr is the back  p r e s s u r e ;  P0 is the initial p r e s s u r e  in the cavity;  a0 is the initial s ize of t hegns  cavi ty  (a 0 ~ 
W1/3). We note that the compact ion e, a r i s ing  on the front  of the p las t ic  wave,  is r e la ted  to closing of g a s -  
sa tu ra ted  p o r e s .  The liquid, contained in the po re s ,  is a s sumed  to be incompress ib l e .  

Taking into account  the condition for  i ncompress ib i l i t y  behind the shock front ,  it follows f r o m  the equa-  
t ion of continuity that  in both zones 

u = aa  2 / r  "z. (4.2) 

Substituting this  re la t ion  into the equation of mot ion in s y s t e m  (1_.1), integrat ing with r e s p e c t  to r and using the 
boundary conditions (4.1) on the cavi ty ,  we obtain the dis t r ibut ion of s t r e s s e s  in zone 1: 
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a <~ r <~ b, - -~ ( r )  = --%(r)  = p(r) = pl((//a 2 ,'-- 2a:a)/r 

--d2a4/2r ~) @ po(ao/a)a~--p~(//a @ (3/2)a-~). 

In tegra t ing  the equa t ion  of m o t i o n  in s y s t e m  (1.1) taking into accoun t  (2.1), (4.1), and 
a s i m i l a r  d i s t r i bu t ion  of  s t r e s s  in zone 2: 

(4.3) 

(4.2) f o r  b-< r ,  we obtain 

~ (<) ( " "  I % ( r ) = - ~ - + p , i ( ~ _ t ) r  ( a T E 7  I -  +p20~7- ~ - - ~ )  + p c o + p ~  - -  

6k 3(r* 3k 
, . . 2 -  _ _  Ur" a 3-1-2~" v 3~f-2k ' 3~2k  

o o ~  < 0 

a -- 1 It ~-~---4 " 
(4.4) 

Knowing the law g o v e r n i n g  the p ropa ga t i on  of  the shock  wave tt (t) and the law gove rn ing  the  expans ion  of the 
cav i ty  a (t), with the help of (4.3) and (4.4), it Is poss ib le  to ca lcu la te  the s t r e s s  in the zone a -- r -  R. The 
funct ion a (t) is obta ined f r o m  a so lu t ion  of the camouf l e t  equat ion.  F o r  R (t)-< b 0, the camouf l e t  equat ion Is 
obtained if the b o u n d a r y  condi t ion on the shock  f ron t  (4.1) is subs t i tu ted  into (4.3), while  fo r  B {t) > b0, the 
condi t ion  for  cont inui ty  of the quant i ty  crr at  r = b  Is used .  The final camouf le t  equat ion  has  the f o l l o w i n g f o r m :  

fo r  R (t) _< b 0 

dt t a.2 - " a s~/3z 
e x = V 7  ' ~ =  ~ y=x=,  - ~ =  [==_(.L_~O].~ 

(the init ial  condi t ions  f o r  Eq. (4.5) at  t o =0 will  be x 0--1 and Y0 =Poel/Poa2o);  

-~Tt,-z-) ,I ~ ~t,7-~-t -~-y ~ > , , - r - - - ; - + - r  T 

( ~ '- (=!" 
- -P . .  c z -  ~ o c ~ -  4 ,, b ~ 7 - 1  77., @ "T" p~- i -  I -~ 

d t  t a x 

= ( ) ( )  a ~:2 x b a b 

== - ( ~  - ~ )  - ( t  - ~ )  

f o r  R (t) _~b 

(4.5) 

c~ - -  4 ',, B ] ) 

�9 I- 1 1 / ~  
+ - , w h e r e  t ,  i s  t h e  The ini t ial  condi t ions  fo r  Eq. (4.6) at  t = t  1 will  be y =Yl and x -= x~ = [ el \ % / 

t ime  a t  which the shock  wave a r r i v e s  at  the b o u n d a r y  of  zone 2 lit =b0), while Yl is the value of  y at this t ime  
obtained f r o m  the solut ion of  (4.5). In Eqs .  (4.57 and (4.6), e t, Pl0, Pl, ~ ,  P20, and P2 a r e  the compac t ion  and 
dens i ty  in frovLt of  the shock  wave and behind the shock  wave In zones  1 and 2, r e s p e c t i v e l y ,  which g e n e r a l l y  
speaking  can be d i f fe ren t .  Eqs .  (4.57 and (4.6) w e r e  solved n u m e r i c a l l y  on a c o m p u t e r  with the fol lowing init ial  
p a r a m e t e r s :  p0=800 kba r ,  ~*=500  b a r ,  k = 0 ,  and p~ =200 b a r .  The  dens i t i es  behind the shock  f ront  In zones  
1 and 2 w e r e  a s s u m e d  to be ident ica l -  Pl =P2 =2.7 g / c m  3. 

The  r e s u l t s  of the ca lcu la t ions  a r e  p r e s e n t e d  in Table  2, whe re  R 1 is the rad ius  of the fa i lure  zone .  
Within the f r a m e w o r k  of  the mode l  c h o s e n  [14], the pos i t ion  of the fa i lu re  f ron t  is Ident if ied with the pos i t ion  
of the shock  f ron t .  F o r  this  r e a son ,  the pos i t ion  of the shock  f ront  at  the t ime  the cavi ty  s tops  g rowing  g ives  
the m a x i m u m  b o u n d a r y  fo r  the fa i lu re  zone.  As is evident  f r o m  Tab le  2, the compac t ion  p a r a m e t e r s  In zones  
1 and 2 and the r e l a t ive  r ad ius  of  the zone with d e c r e a s e d  s t r eng th  b0/a 0 w e r e  va r i ed  dur ing  the ca lcu la t ions .  
The va r i a t ion  In the p a r a m e t e r  b0/a 0 can be r e l a t ed  to the d i f fe ren t  s c a l e s  of the f i r s t  and second  exp los ions ,  
s ince  b 0 g ives  the s i ze  of the zone with z e r o  s t r eng th  p r o p e r t i e s ,  which is c r ea t ed  by  the ac t ion  of the f i r s t  
explos ion .  The  va r i an t  b0/a ~ =0 can be r e p r e s e n t e d  as  a s ingle  exp los ion  de tonated  in a r a d i a l l y  un i fo rm m e -  
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~ 36 
25 
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Fig. 13 

dium with the p a r a m e t e r s  of zone 2. It is evident that as  b0/a 0 i n c r e a s e s  (i.e., as  the sca le  of the f i r s t  ex -  
plosion re la t ive  to the second inc reases )  in al l  the calcula t ions  the m a x i m u m  cavi ty  rad ius  and the radius  of 
the fa i lure  zone i n c r e a s e s  monotonical ly .  F igure  13 shows the m a x i m u m  cavi ty  s ize  amax/a o and the boundary 
of the fa i lure  zone Rt /a  0 as  a function of the quantity b0/a0. The number  of the curve  in Fig. 13 co r re sponds  
to the number  of the s e r i e s  in Table  2. Curves  l a ,  2a, and 3a co r respond  to the cavity rad ius ,  while cu rves  
lb ,  2b, and 3b co r re spond  to the boundary  of the fa i lure  zone. F r o m  Fig. 13, it is evident  that  the g r e a t e s t  
i nc r ea se  in the d imens ions  of the cavi ty  (curve 3a) occu r s  when the compact ion  in zone 2 is g r e a t e r  than in 
zone 1 (ser ies ,  3, Table  2). Analys is  of the r e su l t s  p resen ted  in Fig. 13 leads  to the conclusion that  with the 
second explosion the m a x i m u m  size  of the cavi ty  will be 1.3-1.5 t i m e s ,  and i ts  volume 2.2-2.3 t i m e s ,  g r e a t e r  
than for  the f i r s t  explosion with the s a m e  intensi ty .  We note that  this s impl i f ied  setup does not take into a c -  
count the r e t u r n  mot ion  of the cavi ty .  C o m p a r i s o n  of curves  l b - 3 b  shows tha t  the l a r g e s t  fa i lure  zone d imen-  
sions due to the second explosion occur  fo r  a med ium with low initial  gas  poros i ty .  This  is r e la ted  to the lower  
ene rgy  d iss ipa t ion  on the shock front  due to the sma l l  value of the poros i ty .  As b0/a 0 i n c r e a s e s ,  the value of 
R1/ao i n c r e a s e s  monotonica l ly .  In compar i son  with the f i r s t  explosion (b0/a0 =0), this  i nc rea se  can a t ta in  
30-50%. 

The solution of the p rob l em  of the explosion within the f r a m e w o r k  of the model  p roposed  In [14] only 
gives the c o r r e c t  qual i ta t ive unders tanding of the bas i c  ef fec ts  accompanying  the second explosion:  Inc rease  
in the m a x i m u m  radius  of the cavi ty  and inc rea se  in the fa i lure  zone.  A m o r e  complete  desc r ip t ion  of the 
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TABLE 3 

z ~  

i t -- -- 6,0 26.3 54:2 25 43 68 ~ 7,2 t2,1 !6 
30 5t 81 5 8,6 t4,4 

m 

4,8 25 42 67 I 5 7,1 12,4 i6 
2 10 -- -- 6,0 27,8 5,7 30 50 80 6 8,4 14,7 

! 

I [ 3,3 2,4 57 59 8 t3,5 2t,6 16 
3 t 6 0  77  34 39  29  07 70 0 t60  256 

4 t0 2,7 t3,5 7,1 32,4 6,2 i6 54 70 t0 13,5 i8 
$ 

5 l0 6,0 27,2 7,8 3,9 t,7 70 9,5 15,5 25 i6 

explosion in the medium with radial ly nonuniform strength proper t ies  can only be obtained with a numerical  
solution of the s tar t ing sys tem of equations with the equation of state of the medium [6] reflecting the i r r e -  
versible nature of the volume deformation [3-6], which was used in Secs. 1 and 2. 

For  the equation of state for a saturated porous medium [6], it is neces sa ry  to give a number of pa r am-  
eters  charac ler iz ing  the mater ia l  of the mat r ix  and the saturating liquid. The mic roscop ic  pa ramete r s  were 
chosen as follows: density of the mat r ix  2.65 g / c m  3, plast ic velocity of sound in the matr ix  4509 m / s e c ,  shear  
modulus G m =100 kbar,  shear  strength Y =1 kbar.  The following pa rame te r s  were chosen for  the pore liquid: 
density 0.85 g / c m  3, velocity of sound 1000 m / s e c .  In order  to descr ibe  the mac roscop ic  eIastoplast ic  behavior 
of the porous medium as a whole the values of the constants entering into (1.2) and (2.1) were taken as follows: 
G - 5 0  kbar,  cr* =0.5 kbar ,  k = 0 .  The back p re s su re  was set equal to 500 bar  in all calculations.  

The resul ts  of the numerica l  computations a re  presented in Table 3. Here, calculations 1 and 2 r e p r e -  
sent the resul ts  of the f i r s t  explosions in a radial ly uniform medium with energies  W 0 and 10W 0, respec$ively. 
Calculations 3 and 4 give the resul ts  for detonation of a second explosion with energy Wo and 10W0, respect ively,  
if the energy of the f i rs t  explosion was W0. Calculation 5 gives the resul ts  of the secondary  explosion with 
energy 10W0, if  the energy  of the f i rs t  explosion was also 10W0. 

For  the second explosion, the medium initially has the following complicated radial s t ruc ture .  For  0 
r < d, there is a cavity created by the f i r s t  explosion (d is the size of the cavity f rom the f i rs t  explosion; in 
Table 3 for  calculations 3 and 4 this is area x for  calculation 1 and for  the variants  5, it is area x f rom calcu-  
lation 2). It is assumed that the medium filling this cavity consis ts  of pieces of crashed rock that have fallen 
into the cavity and is porous with a bulk poros i ty  of 75%. The pores  are  completely saturated with liquid. 
Fur the rmore ,  for  d <r -<b0,  there  is a zone with low-strength proper t ies  (zone 1). In this zone, as in the s im-  
plified analys is ,  it is assumed that a* =0 and k = 0 .  For  r >  b 0, it is assumed that the medium has s~rengfh 
proper t ies  (a* =0.5 kbar  and k =0). The poros i ty  of the medium in zones 1 and 2 is 11%. It is evident f rom 
Table 3 that for  the second explosion there  is a significant, compared to the f i rs t  explosion, increase  [r~ the 
dimensions of the fai lure zone, which, as above, we will relate to the maximum radius of the plast ici ty zone. 
This increase  is related to the large  maximum dimensions of the cavity with repeated explosions and, as a 
resul t ,  to the la rge  shear  s t r e s s e s  in regions far  removed f rom the center  of the explosion. This also follows 
f rom Fig. 14, which shows the development of the cavity as a function of t ime (the curves  are  nmnbered in a 
manner  corresponding to the enumerat ion of the calculations in Table 3). Compar ison of curves  4 and 5 indi- 
cates that the maximum cavity radius and, therefore ,  the size of the failure zone depends or~ly slightly on the 
scale of the f i rs t  explosion, i .e. ,  on the p a r a m e t e r  b0/a 0. The osci l la tory  growth of curves  4 and 5 in Fig. 14 
indicates the presence  of ref lected ra re fac t ion  waves, ar is ing with the passage of the main shock wave through 
the boundary of the cavity formed by the f i r s t  explosion. This then leads,  as shown by numerical  calculations, 
to ~he appearance of secondary  shock waves,  propagating behind the p r imary  wave. At the same time, cyclical  
s t r e s s e s  a r i se  in the medium surrounding the old cavity, which can lead to an even g r ea t e r  damage to the me-  
dium. It should also be noted that the final dimensions of the cavity result ing f rom the repeated and initial ex- 
plosions are  near ly  equal due to the s t rong re tu rn  motion with the repeated explosion. The la rges t  maximum 
radius and strong re turn  motion of the cavity with thc second explosion lead to total shear  deformations that 
are  50% g rea t e r  than for the f i rs t  explosion with the same energy.  This fact is important  in studying p rocesses  
related to shear  deformation of a medium with an explosion. 
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The dependence of the peak p r e s s u r e  on distance for variants  2, 4, and 5 (enumeration as in Table 3) Is 
shown in Fig. 15. The charac te r i s t i c  deviation tn curve 5 is related to the passage of the shock wave through 
the boundary of the cavity formed by the f i r s t  explosion. The absence of a c lear ly  visible deviation in curve 4 
is related to the small  dimensions of the cavity formed by the f i rs t  explosion for this variant  of the calculation. 
In zone 1, the amplitude of the shock wave with the second explosion is g rea te r ,  and in zone 2 smal le r ,  than 
f rom the f i rs t  explosion with the same intensity.  Figure 16 shows the dependence of the azimuthal  s t r e s s  
a(p on the distance at a t ime when the gas cavity formed by the explosion stops expanding; it Is evident that 
one feature of the f i rs t  explosion for the chosen pa rame te r s  of the medium and back p re s su re  is the presence  
of a zone, behind the plast ici ty zone, with azimuthal tensile s t r e s se s ,  which can be identified with a radial  
f rac ture  zone [20, 21]. The resul ts  of the calculations show that with repeated explosions such a zone is not 
formed due to the presence  of a region with low strength.  Thus, it is difficult to obtain a radial  f rac ture  r e -  
gion with a repeated explosion. The jump in curves  4 and 5 is related to the boundary between zones 1 and 2. 
Analysis of curves 2, 4, and 5 shows that the azimuthal s t r e s s e s  with repeated explosions are  g r ea t e r  than 
for the f i rs t  explosions.  

The equation of state of the medium used in the present  work [6] permi ts  obtaining the distribution of 
the pore p re s su re  af ter  an explosion. Figure 17 shows these dependences for explosions 2, 4, and 5, and it is 
evident that as a resul t  of the explosion a zone with high pore p re s su re  is formed.  According to [4-6], its 
appearance is related to par t ia l  pore filling at the compress ion  phase with the passage of the shock wave. 
The presence  of a zone with increased pore p re s su re  can have an important  effect on the f i l t rat ion proper t ies  
af ter  the explosion. It is evident f rom Fig. 17 that the size of this zone ls somewhat g r ea t e r  for  the second 
explosion than for  the f i rs t  explosion. 

Table 3 also shows the charac te r i s t i c s  of the dissipative p rocesses  for the initial and repeated explo- 
sions.  All energy values correspond to a t ime when the cav i ty  has stopped expanding. The energies  are  
labeled as in Table 1. It is evident f rom Table 3 that the fract ion of the energy  dissipated on the shock front, 
as well as the kinetic energy  of the medium and energy of the gases  in the cavity for  the f i rs t  and repeated 
explosions, are  near ly  equal. The value of E 2 and, as a result ,  that of E 4 are  significantly less  for the r e -  
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peated explosions. This is related to the presence of zone 1, where there are no tangential s t resses  and where 
the shear is much grea ter  than in zone 2. As a result ,  the stored elastic energy E 5 is much higher. The en- 
ergy stored in this manner returns to the medium in the form of kinetic energy and energy of compression of 
gases in the cavity during the return motion of the cavity. This is one of the reasons for the strong return 
motion of the cavity with the repeated explosion. Thus, the repeated explosion is characterized,  compared to 
the f i rs t  explosion, by a smaller  fraction of energy dissipated into heat and a grea ter  residual elastic energy. 
Analysis of the dynamic effects of the repeated explosion in a porous saturated medium leads to the following 
results:  increased maximum radius of the cavity and failure zone; la rger  dimensions of the zone with high 
pore pressure ;  appearance of cyclical s t resses  in the vicinity of the cavity formed by the f irs t  explosion and 
even grea te r  destruction of the medium; shear s t resses  with repeated explosions, presented in Table 3, 50% 
greater  than si~resses arising with an initial explosion with the same energy. The calculations showed that for 
the repeated explosion there is a strong return motion of the cavity. 

In concl~,sion, the authors thank V. N. Nikolaevskli for the suggestion of examining the dissipation of 
energy in the near zone of an explosion and V. I. Musinov for suggesting an analysis of the effects of the r e -  
peated explosion in a porous medium. The authors are grateful to S. Z. Dunin and V. V. Surkov for present-  
ing them with the results of [6] before publication. The authors are grateful to V. K. Sirotkin for many useful 
remarks  and discussion of the work. 
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E X P L O S I O N  IN A G R A N U L A R  P O R O U S  

W I T H  V A R I A B L E  D I L A T A N C Y  

E .  E .  L o v e t s k i I ,  V.  K .  S i r o t k l n ,  
a n d  E .  V .  S u m t n  

M E D I U M  

UDC 622.235.5 +539.374 

C o r r e c t  desc r ip t ion  of the flow of a g ranu la r  med ium ls ve ry  impor tan t  In consider ing an explosion in a 
g r anu l a r  or  b r i t t l e  rock .  The mos t  impor tan t  fea ture  of the flow of such a med ium a r i s e s  f r o m  repacking  
ef fec ts ,  which r e su l t  not only in shea r  de format ion  but a l so  in i r r e v e r s i b l e  bulk s t ra in .  Usually,  this bulk 
deformat ion  is desc r ibed  within the f r a m e w o r k  of a di la tancy model  [1]. The magnitude and sign of the dUatancy 
veloci ty  a r e  subs tant ia l ly  dependent on the p r e s s u r e  and densi ty  [2-5].  It is a s sumed  at  p r e sen t  [6-9] that the 
di la tancy veloci ty  is constant  fo r  such a m ed ium.  However ,  such an a s sumpt ion  does not allow one to incorpo-  
r a t e  the r e a l  dynamic  behav ior  of the med ium or  to cons ider  the effects  of the initial s ta te  on the r e su l t s  of the 
explosion.  

Here  we p r o c e s s  expe r imen ta l  data  to der ive  an exp re s s ion  for  the dUatancy veloci ty  as  a function of 
the p r e s s u r e  and densi ty .  This  r e su l t  is used in de te rmin ing  the expansion of a spher ica l  gas  cavi ty  in an 
e las top las t i c  dilating med ium.  P a r t i c u l a r  at tent ion ls g iven to the f ina l  c h a r a c t e r i s t i c s  of the med ium nea r  
the cavi ty .  No al lowance is  made  fo r  the s t rength  di f ference  between the undisrupted and disrupted med ia ,  
although this can be done if one a s s u m e s  that  the adhes ion is sma l l  by c o m p a r i s o n  with the d ry  f r ic t ion.  

1. We cons ider  spher i ca l ly  s y m m e t r i c a l  mot ion in an e l a s top las t i c  porous  dilating medium,  which is 
c o m p r e s s e d  by a l l thos ta t ic  p r e s s u r e  Ph- The source  of the mot ion ls a cavi ty  of init ial  radius  a 0 f ined  with 
adiabat ica l ly  expanding explosion ga se s  of init ial  p r e s s u r e  P0 and adiabat ic  p a r a m e t e r  ~/. 

The mot ion  is desc r ibed  by the equat ion of continuity and the equation of mot ion:  

o-'7 "~- + P ~Tr + 2 -= 0; (1.1) 

(0[$ On) 0, . ' 0'1~ ~'1~ 
P ~ - [ - U - ~ r  = Or d--5- '~r  + ' 7 " '  (1.2) 

where  r is the dis tance f r o m  the explosion cen te r ,  t is the t ime ,  u is  the m a s s  veloci ty,  and p is the cu r r en t  
densi ty .  The tangential  s t r e s s  T and the p r e s s u r e  p a r e  given by ~ = (l/2)(e r - -  %), p = - -  (i/3)((~r + 2%), 
where  a r and a~ a r e  the rad ia l  and az imutha l  components  of the s t r e s s  t enso r .  

The s t r e s s  var ia t ion  in the e l a s t i c - s t r a i n  zone is r e la ted  to the veloci ty  by Hooke ' s  law: 

d-"T \ O r - - ' 7 '  -~  = - K  ~ - 2 r  ' 

where  d /d t  = 0/0t + u0 / 0 r ,  G is the s h e a r  modulus ,  and K is the bulk c o m p r e s s i o n  coeff icient .  

P l a s t i c  s t r a i n  will occur  if the condition fo r  p las t i c  flow is m e t .  We take this condition in the M i s e s -  
H u b e r - S c h l e i c h e r  f o r m :  

~l~[=~(A) -4-Y, (1.4) P 

where  a (A) is the coeff icient  of f r ic t ion,  which ls dependent on the dUatancy veloci ty  A and Y is the adhesion.  
The a (A) dependence has  been der ived  in [1] by p roces s ing  data fo r  var ious  types  of sands  and takes  the f o r m  

(A) = ~ (i.52 ~- t.38A - -  A2). (1.5) 
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